翻訳と辞書
Words near each other
・ Nersisian School
・ Nerskaya River
・ Nerskogen
・ Nerskogen Chapel
・ Nerskogen, Sør-Trøndelag
・ Nersornaat
・ Nerston, Mpumalanga
・ Nerston, South Lanarkshire
・ Nerstrand City Hall
・ Nernst effect
・ Nernst equation
・ Nernst glower
・ Nernst heat theorem
・ Nernst lamp
・ Nernstia
Nernst–Planck equation
・ Nero
・ Nero (1922 film)
・ Nero (2004 film)
・ Nero (band)
・ Nero (Closterkeller album)
・ Nero (comic book character)
・ Nero (comics)
・ Nero (confectionery)
・ Nero (DC Comics)
・ Nero (disambiguation)
・ Nero (yacht)
・ Nero AAC Codec
・ Nero AG
・ Nero and the Burning of Rome


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nernst–Planck equation : ウィキペディア英語版
Nernst–Planck equation
The time dependent form of the NernstPlanck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It describes the flux of ions under the influence of both an ionic concentration gradient \nabla c and an electric field E=-\nabla \phi - \frac. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces:
\frac = \nabla \cdot \left(D \nabla c - u c + \fracc(\nabla \phi+\frac) \right )
Where
* t is time,
* D is the diffusivity of the chemical species,
* c is the concentration of the species, and u is the velocity of the fluid,
* ''z'' is the valence of ionic species,
* ''e'' is the elementary charge,
* k_B is the Boltzmann constant
* ''T'' is the temperature.
* u is relative velocity of the observer to the ionic system
If the diffusing particles are themselves charged they influence the electric field on moving. Hence the Nernst–Planck equation is applied in describing the ion-exchange kinetics in soils.
In the context of Neuroscience, this equation is best known in its steady-state form, where there is a balance of diffusion and drift. Setting time derivatives to zero, and noting that the term J = -uc represents a current flux J
\nabla \cdot \left(D \nabla c + J + \fracc(\nabla \phi) \right )= 0
Integrating the divergence over an arbitrary surface, one obtains the steady state Nernst-Planck equation
J = -\left(D \nabla c + \fracc(\nabla \phi) \right )
Finally, in units of \frac and the gas constant R, one obtains
the more familiar form (e.g. 〔B. Hille (1992) Ionic Channels of Excitable Media, 2nd Edition, Sinauer, Sunderland Mass. p.267〕
J = -zFD\left(\nabla c + \frac(\nabla \phi) \right )
==See also==

*Goldman-Hodgkin-Katz equation
*Bioelectrochemistry

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nernst–Planck equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.